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Di�usion via splitting and remeshing via merging
in vortex methods

Mei-Jiau Huang∗;†

Department of Mechanical Engineering; National Taiwan University; Taiwan

SUMMARY

The technique of splitting a fat vortex element (with a core width larger than some threshold) into some
thin ones in order to �x the convergence problem of the core-spreading vortex methods is convenient
and e�cient. In particular, it keeps the method purely Lagrangian. In the present investigation, the
splitting process is further viewed as part of the physical di�usion process. A new splitting method in
which several weaker child vortices surround a thinned but still strong parent vortex is proposed. It is
found that because of the survival of the parent vortex, the error arising from the splitting events can
be largely reduced. The computational amount on the other hand is kept reasonably large by merging
similar and close-by vortices. The merging scheme designed herein not only involves fewer restrictions
but also allows merging vortices of opposite rotations through the viewpoint of remeshing. The validity
and accuracy of these techniques, proposed particularly for simulations undergoing lots of splitting and
merging events, are veri�ed by successfully simulating the interactions between two Burgers vortices
under an external straining �eld. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discrete vortex method (see Reference [1]) has been developed as a numerical simulator
for two-dimensional incompressible inviscid �ows. In this method, the convection of packets
of vorticity (vortex elements) is tracked. The method can be thus implemented grid free. The
compactness of the vorticity �eld compared to that of the primitive variables also makes the
vortex method advantageous, in addition to its exact satisfaction of boundary conditions at
in�nity for external �ows. Viscous e�ects however are important but di�cult to be added
in such a Lagrangian approach because of poor evaluation of the Laplacian operator due to
scattered, unpredictable distributions of the vortex elements. The most straightforward viscous
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treatment simply uses grid-based �nite-di�erence methods by mapping data between the Eule-
rian and Lagrangian grids (see Reference [2]). Interpolations are therefore needed in order to
evaluate the Laplacian operator and perform mapping, which possibly result in excessive nu-
merical di�usion. Another vortex method using the mapping technique is the di�using-vortex
method �rst proposed by Lu and Shen [3] and extended later by Lu and Ross [4]. In this
method, discretized vortices, located at the mesh points of a �xed grid, always start from
the mesh points and move only one time step. To simulate di�usion, each vortex spreads its
vorticity in a Gaussian distribution. The new vorticity at each mesh point then de�nes the
new vortex.
Several purely Lagrangian schemes have also been proposed. The core-spreading method

was introduced by Leonard [1], in which the core widths of vortex elements grow exactly
according to the heat di�usion equation. A localized re-gridding is required nonetheless for a
correct convergence to the Navier–Stokes equations [5]. For the sake of simulating di�usion,
the random-walk approach proposed by Chorin [6] added a pseudo-random velocity like the
Brownian motion to the element velocity. It was shown nonetheless that the scheme converges
slowly and provides a low resolution, although it is stable. The particle-strength-exchange
scheme (see Reference [7]) redistributes the strength (circulation) among vortex elements to
account for di�usion by approximating parts of the governing equations by integral opera-
tors. Fishelov [8] proposed to apply the Laplace operator on the convolution of some cut-o�
function with the delta distribution function. Both methods encounter with di�culties however
when the �ow becomes strained. Lots of remeshing processes are required in order to maintain
a regular distribution of the vortex elements. This increases the computational amount and
makes schemes not so perfectly Lagrangian. Instead of approximating the Laplace operator by
integral operators, the vortex-redistribution method proposed by Shankar and van Dommelen
[9, 10] distributes fractions of circulation of each vortex to its neighbouring vortices within
a chosen distance. The fractions are computed by equating the Fourier transforms with some
truncated Taylor series of the exactly di�used vorticity and the resulting vorticity after the
redistribution. A solution of the redistribution equations however does not necessarily exist.
New vortices with zero circulation must be added then until a solution does become possible.
In 1991, Ogami and Akamatsu [11] proposed a method called the di�usion-vortex method

in which a di�usion velocity is de�ned and added to the element velocity to simulate di�usion.
The method was improved later by Kempka and Strickland [12], Shintani and Akamatsu [13],
Huang [14], as well as Huang and Chen [15]. In spite of having a stronger physical basis and
the conservation of circulation on any arbitrary ‘di�usion material surface’ (a surface which
moves at the total velocity of the �uid velocity and the di�usion velocity), the di�usion-vortex
method requires many more computations and has a di�culty in evaluating the di�usion
velocity when the local vorticity is zero. Moreover, the core widths still generally grow in
time. The convergence problem is still existent. For more details of these vortex methods,
the readers may be referred to the works of Leonard [16], Anderson and Greengard [17],
Gustavson and Sethian [18], Beale et al. [19], Cottet and Koumoutsakos [20], and so on.
To �x the convergence problem of the core-spreading vortex methods, Rossi [21] proposed

the solution of replacing a too fat vortex element (called a parent vortex) by several thin ones
(called child vortices). The strengths and the locations of the child vortices are determined
by preserving the total circulation and the second moment of the vorticity about the centre
of the parent vortex. The core widths of vortex elements can thus remain small at all times,
although the number of computational elements grows terribly rapidly. To control the number,
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Rossi then suggested that similar and close-by vortices should be merged into one [22]. These
techniques have been employed for a study of monopole and tripole attractors for relaxing
vortices [23]. Worry arises however when simulations must undergo very many splitting and
merging events such that the so-induced errors may become unacceptable. The motivation of
the present study is thus to seek for an improvement of Rossi’s techniques.
First, the splitting process may be viewed as a part of the di�usion process. In other words,

the circulation is kind of being di�used or thrown away from the parent vortex by generating
child vortices. An important issue is that the parent vortex just becomes weaker and should
still exist after di�usion. A physically reasonable layout after splitting is thus a weakened
and thinned parent vortex surrounded by several child vortices. In the present work, such a
splitting method will be proposed and investigated.
Secondly, in Rossi’s merging scheme, many criteria are required to judge a success of a

merging event. Related computations become useless and wasted if any of these criteria is not
ful�lled. Moreover, merging vortex elements of opposite rotations is not considered, which
however is not impossible from the viewpoint of remeshing and is necessary for an economic
simulator. A modi�ed merging scheme that involves fewer restrictions and allows merging
vortices of opposite rotations is therefore desired and designed herein.
This paper is arranged as follows. Leonard’s original core-spreading vortex method is re-

viewed in Section 2.1. The splitting methods of interest are introduced and compared in
Section 2.2. Rossi’s merging method and the one modi�ed by the author are both discussed
in Section 2.3. To demonstrate the validity and accuracy of these newly proposed splitting
and merging schemes, they are applied to the simulations of the interactions between two
identical Burgers vortices of same or opposite rotations under an external straining �eld in
Section 3. Physical quantities are measured and compared with those obtained from previous
investigations [24, 25]. Conclusions are �nally given in Section 4.

2. NUMERICAL METHODS

2.1. Core-spreading vortex method

For two-dimensional incompressible Newtonian-�uid �ows, the governing equation for vor-
ticity (!) is

@!
@t
+ u

@!
@x
+ �

@!
@y
= �∇2! (1)

where u and � are the velocity components, and � is the �uid viscosity. In a vortex method, a
vorticity �eld is composed of vortex elements. If Gaussian vortices are adopted, the vorticity
�eld is written as

!(x; t)=
N∑
j=1

�j
��2j

exp

(
−|x − xj|2

�2j

)
(2)

where �j(t) is the circulation (strength) of the jth vortex element, distributed mainly within
a distance of �j(t) (core width) from the centre of the element, xj(t). Equation (1) is then
satis�ed by properly selecting �j(t), xj(t), and �j(t). In Leonard’s core-spreading vortex
method, a vortex element preserves its circulation, moves at its central �uid velocity, and
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changes its core width in such a way that the di�usion term in Equation (1) is exactly
satis�ed. In a word,

d�j
dt

= 0 (3)

dxj
dt
= u(xj; t) (4)

d�2j
dt

= 4� (5)

where the velocity components can be evaluated through the Biot–Savart law:

u(x) =−
N∑
j=1

�j
2�
(y − yj)
|x − xj|2

{
1− exp

(
−|x − xj|2

�2j

)}
(6)

�(x) =
N∑
j=1

�j
2�

(x − xj)
|x − xj|2

{
1− exp

(
−|x − xj|2

�2j

)}
(7)

Consequently, when substituting Equations (2)–(5) into Equation (1), one �nds that the di�u-
sion term is satis�ed completely but the convection terms are not [1]. To keep the associated
error small, the core widths of the vortex elements must remain small. Equation (5) nonethe-
less implies that the core widths increase with time and therefore so does the error. This error
then leads to an incorrect convergence of the numerical solutions [5].

2.2. Splitting schemes

The idea of splitting a fat vortex into several thin ones was �rstly proposed by Rossi [21].
The original method is summarized as follows. First, let �M be the allowed maximum core
width. The attempt is to split a parent vortex of a core width �p and strength �p into M thin
child vortices, whenever �p is greater than �M . The widths of the child vortices are selected
to be ��p with 0¡�¡1. The larger the �, the smaller the induced splitting error, however
but the fatter child vortices are obtained, the sooner child vortices themselves must split.
In Rossi’s original scheme, these child vortices are uniformly distributed around the centre

of the parent vortex at a distance r away. The value of r and the strength (�c) of the child
vortices are determined by preserving the total circulation and the second moment of vorticity
about the centre of the parent vortex, where the nth moment is de�ned as

nth moment≡
∫
(x×)n� dx dy (8)

This scheme will be called the splitting method (I) hereafter. A careful examination of the
induced vorticity �eld error however reveals that the maximum error always occurs at the
centre of the parent vortex and cannot be reduced by increasing the number of child vortices
(M). Shiels [26] suggested that instead of preserving the second moment, the vorticity value
at the centre of the parent vortex should be preserved. (This scheme is denoted as the splitting
scheme (II).) Accuracy is therefore improved.
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Table I. Formulae that determine the location and strengths of the M child vortices
as well as the thinned parent vortex, if exists.

Location Strength

(I) r2=�2p = 1− �2 �c =�p=M
(II) r2=�2p = − �2 ln �2 �c =�p=M
(III) r2=�2p = 1− exp(−r2=�2�2p) �0 =�p −M�c

�c = (1− �2)�p=M · �2p=r2
(IV) r2=�2p = 2(1− �2) �0 =�p=2

�c =�p=2M

Since it is the viscosity that causes the growth of the core width, splitting arising from the
growth must re�ect the truth of di�usion. As far as di�usion is concerned, the parent vortex
throws out some but not all of its circulation to the child vortices. Therefore, a physically
reasonable layout after splitting should be a thinned and weakened parent vortex surrounded
by several child vortices. A new splitting method is thus proposed and described as follows.
Let �0 and �0 be the width and strength of the parent vortex after splitting. For simplicity,
�0 = ��p is chosen. Two degrees of freedom r and �0 can now be employed to preserve both
the second moment and the vorticity value at the parent’s location (denote this scheme as
the splitting scheme III). As far as moments are concerned, these degrees of freedom may
be alternatively determined by preserving the second and the fourth moments of vorticity
(denoted as the splitting scheme IV).
The equations governing the locations and strengths of the child vortices in the above four

splitting schemes are summarized in the Table I. The relation between the ratio of r=�p and
the splitting parameter � is shown in Figure 1. Given a value of �, the splitting schemes (I)
and (II) have smaller ratios of r=�p because these ratios are used not only to place child
vortices but also to maintain most vorticity at the parent’s location. Shown in Figure 2 is the
induced maximum �eld error against M in a single splitting event in which �p = 1, �p =�,
and �=0:9. As seen, Rossi’s scheme (I) has an error independent of M . The other schemes
have decreasing errors with an increasing M but the decrease gets saturated quickly. With a
�xed M = 6, the maximum �eld errors are again measured and plotted against (1− �2) also
in Figure 2. As seen, the schemes become third-order accurate in (1 − �2) with the survival
of the parent vortex. Surprisingly, if a smaller M is employed, the order of accuracy becomes
smaller too. However, splitting methods (III) and (IV) are always superior to methods (I)
and (II).
When there are many fat vortices being split at the same time, the induced errors may

be destructive or constructive. Also, errors may accumulate as time goes by. The schemes
are next examined by applying them to simulate a decaying Burgers vortex. The initial �ow
consists of a single vortex element that has a core width of 0.4 and a circulation of 5. The
exact vorticity �eld at time t is known to be

!(x; t)=
5

�(0:16 + 4�t)
exp

(
− |x|2
(0:16 + 4�t)

)
(9)

The maximum �eld errors of numerical solutions with �=0:04 at t=0:9 under the choices of
�M =0:4 and M =6 are measured and plotted against (1−�2) in Figure 3. Two conclusions can
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Figure 1. The ratio of the distance r to the original parent’s core width
(�p) versus the splitting parameter �.

Figure 2. The maximum splitting errors induced in a splitting event: (a) square: I, diamond: II, triangle:
III, and circle: IV; and (b) dotted line: I, dash line: II, dash–dotted line: III, and solid line: IV.

be made. First, the newly proposed schemes (III and IV) are capable of reducing the maximum
�eld error by one order of magnitude. Second, errors are constructed or accumulated in the
worst way in scheme (II), although it performs better than scheme (I) in a single splitting
event.
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Figure 3. The maximum �eld errors in simulating a decaying Burgers vortex: square: I; diamond: II;
triangle: III; circle: IV. Two dotted lines have slopes of 1 and 2.5 for reference.

2.3. Merging schemes

After many splitting events, vortex clusters may be formed and become unnecessarily dense.
In order to reduce the computational amount, similar and close-by vortex elements should
be merged into one. The �rst merging scheme was designed by Rossi in 1997 [22] and is
described below. Let {�j;xj; �j}Mj=1 be the vortices to be merged and {�0;x0; �0} the resulting
vortex. Rossi showed that the induced maximum �eld error is no greater than M1�0=��20,
where M1 is the maximum absolute value of the following function

exp(−x2)− � exp(−�(x − a)2) (10)

in the parameter domain of b16�=�20=�
2
j6b2 and a= |xj−x0|=�06R. In Rossi’s scheme, b1,

b2, and R are prescribed and M1 is found in advance. A merging event is claimed to succeed
only if every pair of (�; a) in the group of vortices lies within the prescribed parameter domain
and if the upper bound of the merging error, M1�0=��20, is less than some error tolerance. If
any of these criteria is not ful�lled, merging is not allowed and all the related computations
become useless and wasted. To improve this shortcoming, one notices that the upper bound of
the induced error can be replaced by �0=�Min16j6M �2j , if �

2
0=�

2
j¿1 for some j. This comes

from the observation that M1 =Max(1; �) for an arbitrary a. Let �� be the error tolerance,
where � is a referenced circulation (for example, the total circulation of a �ow). Then the
merging criterion becomes

�0=�¡�� Min
16j6M

�2j (11)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:521–539



528 M.-J. HUANG

Consequently, after the group of vortices, {�j;xj; �j}Mi=1, is selected, �0 is not computed unless
criterion (11) is ful�lled. A successful merging event is claimed only if �0 is computed and
�06�M .
To determine {�0;x0; �0}, Rossi suggested the restrictions of preserving the total circulation,

the �rst and the second moments of vorticity. Consequently,

�0 =
M∑
j=1
�j (12)

�0x0 =
M∑
j=1
�jxj (13)

�0�20 =
M∑
j=1
�j(�2j + |xj − x0|2) (14)

Luckily, the condition that �20=�
2
j¿1 for some j is guaranteed from Equation (14) if all vortices

rotate in a same direction. This merging scheme will be labeled as the merging scheme (a)
in the present study. Alternatively, if one prefers, Equation (14) may be replaced by

�0
�20
=

M∑
j=1

�j
�2j
exp

(
−|xj − x0|2

�2j

)
(15)

which preserves the vorticity value at x0. This is the merging scheme (b). If all vortices rotate
in the same direction, say in the counterclockwise direction, then it is obvious that

�0
�20
6

M∑
j=1

�j
�2j
6

∑M
j=1 �j

Min16j6M �2j

Consequently, it is guaranteed again that �20=�
2
j¿1 for some j.

Finally, in either method, �0 cannot be calculated until the group of vortex elements to be
merged has been selected. Moreover, if two far-away vortices are merged, the resulting �0
is easily larger than �M and becomes unwanted. In the present work, an algorithm modi�ed
from Rossi’s original one is used. Its procedures are listed below:

1. Select the referenced circulation � and specify the error tolerance �.
2. Loop on i from 1 to N . Set C consisting of i.
3. Loop on j from i + 1 to N . Element j is added to C if �i · �j¿0; |xj − xi|6��M , and
so far the total circulation in C is less than �ref =��(��M )2�.

4. End loop j.
5. If |C|¿1, �nd the minimum �2j and compute �0.
6. If �0=�6��Min16j6M �2j , compute x0 and �0.
7. If �06�M , replace {�i ; �i;xi} by {�0; �0;x0} and remove all the other vortices in C from
the simulation.

8. End loop i.

Note that the parameter � is introduced in the algorithm to avoid selecting too far-away
vortices. Also, because the minimum core width is expected to be about ��M , the referenced
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Figure 4. The locations of the computational vortex elements and the vorticity
contours (!) at the last simulation time 	=2.

circulation �ref is chosen. Finally, because simulations with lots of splitting events are targeted,
the merging procedures are carried out at time steps when splitting events occur. Temporarily
huge computational amount can thus be avoided.
The validity of the proposed merging schemes is now tested as follows. Consider the

evolution of a Burgers vortex of radius 1 and a circulation 20� under an external straining �eld
US = (−�x;−�y; 
z) with �=1, �=3, and 
=4. A non-axisymmetric steady state is expected.
To simulate such a �ow, a coordinate transformation is needed and will be described later in
the next section. The �uid viscosity � is taken to be one and thus the associated Reynolds
number Re=�=2�� is 10. The instantaneous locations of the computational vortex elements
and the nearly steady vorticity contours (!) at the last simulation time 	=2, obtained using
the method (IIIb) with M = 6, � = 0:9, �M = 0:3, and a time increment d	=0:001 are shown
in Figure 4. The error tolerance for merging is chosen to be �=0:01=(1+ 
	). The evolutions
of the second principal moments, �′

x and �
′
y, of vorticity are plotted against the simulation

time 	 in Figure 5. The values are asymptotic to those (0.86 and 1.23 as marked by arrows
in the �gure) obtained by Robinson and Sa�man [24].
The accuracies of the numerical solutions can be further examined by measuring the steady

vorticity value at the origin, which is found herein by averaging the vorticity values at the
origin over the last 500 time steps. They are !=2Re=0:962 (IIIa) and 0.971 (IIIb) when
�M =0:5, and they are 0.952 (IIIa) and 0.954 (IIIb) as �M =0:3, compared to 0.95 obtained
by Robinson and Sa�man [24] and 0.953 by Buntine and Pullin [25]. In all simulations
addressed, the merging scheme, (a) or (b), works successfully in controlling the total number
of the computational vortex elements for such a long time simulation. The number is about
4000 when �M =0:5 and about 10 000 when �M =0:3 at the last simulation time 	=2. Finally,
it should be mentioned that the core-spreading vortex method without a splitting technique
generates totally wrong results for the present problem. Nearly axisymmetric �ows are obtained
instead, because the core widths become too large eventually.
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Figure 5. The evolutions of the principal second moments of a strained Burgers
vortex: solid lines: IIIa; dotted lines: IIIb.

The above merging scheme however only allows merging vortex elements of a same rota-
tion. From the viewpoint of remeshing, merging elements of opposite rotations is not unrea-
sonable as long as it does not induce errors larger than the given tolerance. As studied by
Rossi [22], the �eld error induced in a merging event, E(x), is

E(x) =

∣∣∣∣∣ �0��20 exp
(

−|x − x0|2
�20

)
−∑

j

�j
��2j

exp

(
−|x − xj|2

�2j

)∣∣∣∣∣
=

∣∣∣∣∣∑j
�j
��20

{
exp

(
−|x − x0|2

�20

)
− �20
�2j
exp

(
−|x − xj|2

�2j

)}∣∣∣∣∣
It is easy to show that

E(x)6
∑
j

|�j|
��20

·M1 (16)

where as before M1 is the maximum absolute value of function (10). The merging criterion
therefore must be changed to

∑
j

|�j|
��20

·M1¡��ref

Furthermore, two more restrictions are needed if the extension of the above merging scheme
to merge vortex elements of opposite rotations is required. First, because there is now no
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guarantee that �0 is greater than �j for some j, one has to check whether
∑

j|�j|=�6���20.
Second, the conservation of the �rst moment, Equation (13), may result in a far, irrational,
location x0. A criterion Max16j6M |x0 − xj|6��M is thus added and examined after x0 is
computed and before �0 is computed. Finally, the restriction that �i · �j¿0 in step 3 is no
longer needed. Merging is given up as soon as any of the criteria is not ful�lled. Such a
merging scheme will be veri�ed in the next section.

3. ILLUSTRATIONS

To verify the proposed splitting and merging methods, the attempt is to simulate the inter-
actions between two Burgers vortices under an external straining �eld. These kinds of �ows
were �rst analysed by Robinson and Sa�man [24] in use of the perturbation method and
simulated by Buntine and Pullin [25] by a spectral method. The �ow is brie�y introduced
now. Consider a velocity �eld u=US + ���, where US is incompressible as well as irrotational
and �(x; y; t) is two dimensional. The straining �eld US is selected to be US = (−�x;−�y; 
z)
with 
= �+ �. It can be shown that the vorticity ! is governed by

@!
@t
+ u

@!
@x
+ �

@!
@y
= 
!+ �

(
@2!
@x2

+
@2!
@y2

)
(17)

Under the transformation of

�(X; Y; 	)=!(x; y; t)e−A(t) =
@V
@X

− @U
@Y

(18)

	=
∫ t

0
eA(t) dt (19)

(X; Y )= (x; y)eA(t)=2 (20)

and

A(t)=
∫ t

0

(t) dt (21)

it is known that Equation (17) can be rewritten as

@�
@	
+ (U − �X ) @�

@X
+ (V + �Y )

@�
@Y
= �

(
@2�
@X 2

+
@2�
@Y 2

)
(22)

where �=(�−
=2)=exp A. It is the vorticity �eld �(X; Y; 	) that will be solved by the present
vortex methods. Vortex elements are now set to move at a velocity of (U −�X; V +�Y ). The
evolution of the vorticity �eld ! however is going to be discussed.
Experiences show that the splitting method (II) often works poorly and thus is discarded.

For consistency, combinations of splitting and merging schemes like (Ia) and (IVa) will be
employed. Combinations like both (IIIa) and (IIIb) are of interest.
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3.1. Merging of two Burgers vortices of a same rotation

The goal is to obtain the complete merging process of two Burgers vortices which have
a radius a=1 and are separated by a distance of d=4. The external straining �eld has

=4 and �=3. The �uid viscosity is �=1. Each of the Burgers vortices is initially dis-
cretized into 222 vortex elements uniformly distributed along 8 concentric circles as shown in
Figure 6. They all have an initial core width of �j(0)=0:25. Their strengths are so adjusted
that the vorticity values are exact at their locations, except those elements in the most outer
circle. The strengths of those elements are adjusted to match the desired Reynolds number
Re=�=2��=80, where � is the circulation of one Burgers vortex. The simulation param-
eters used are �=0:85, M =4, �M =0:325, �=0:0002, �=0:5, and d	=0:001, under the
consideration of both the accuracy and the e�ciency. The �rst splitting event is thus expected
to occur at 	1 = (�2M − �(0)2)=4�≈ 0:011. The time period between two successive splitting
events is �	=�2M (1− �2)=4�≈ 0:0073. The three important time scales involved in this �ow
are respectively the convective timescale t� =2�d2=Re, the straining timescale t
=4
−1, and
the viscous timescale t�= a2=�. The latter two have been normalized to be one [25].
Figure 6 shows the so-obtained merging process at some selected times. The results agree

well with those obtained by Buntine and Pullin [25]. Nearly the same results are obtained
as well when the resolution is increased to be �M =0:25 (not shown here). A too large �M
however causes the �ow to be too di�usive. Physically it should not be greater than the
length scale

√
�=
=0:5. The accuracies of the schemes are compared by the computed radial

vorticity distributions as shown in Figure 7. Compared to the results (�=0◦) of Buntine and
Pullin, schemes (IIIb) and (IVa) seemingly have the best agreement; (Ia) slightly overpredicts
while (IIIa) slightly underpredicts the vorticity value at the origin. The di�erence however is
not much, probably because the merging errors dominate over the splitting errors.
The numbers of the computational vortex elements are about the same for the four schemes

as shown in Figure 8 and are much smaller than the grid number (1282) used by Buntine
and Pullin [25]. The numbers increase approximately linearly in time 	 because of the spatial
transformation, Equation (20). That is, because the area with non-negligible vorticity grows
linearly in (1+ 
	), so does the number of the computational vortex elements. In remark, the
proposed splitting and merging schemes successfully and e�ciently simulate the interaction
between two Burgers vortices of a same rotation.

3.2. Cancellation of two Burgers vortices of opposite rotations

At last, the proposed schemes are applied to the simulation of the cancellation of two Burgers
vortices of opposite rotations. The external straining �eld with �=16 and 
=4 is chosen.
The initial condition is the same as that in the previous subsection except that the right
Burgers vortex is changed to be clockwise. For simplicity, the centre of the external straining
�eld is chosen to move vertically together with the centre, xc, of the Burgers vortex. The
y-displacement of the vortex centre is obtained by solving

dyc
dt
= v(xc; yc; t); yc(0)=0 (23)

or after transformation
dYc
d	
=V (Xc; Yc; 	) +


Yc
2(1 + 
	)

; Yc(0)=0 (24)
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Figure 6. The merging process as Re=80 obtained by scheme (IVa). The instantaneous loca-
tions of the vortex elements and the vorticity contours (�!=9 and !min = 1) at 	(t)=0(0),

0.1(0.08),0.2(0.15),0.3(0.20),0.4(0.24), and 0.8(0.36) are shown.
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Figure 7. The radial distributions of the vorticity along the directions: (a) �=0◦; and (b) �=115◦ at
t=0:2. Dotted line: Ia; Dash line: IIIa; Dash dotted line: IIIb; Solid: IVa.

Figure 8. The numbers of the employed computational vortex elements at every other �	: squares: Ia,
triangles: IIIa; diamonds: IIIb; and circles: IVa.

The velocities of the computational vortex elements are also changed correspondingly to
become (U − �X; V + �Y − �cYc), where �c = (�− 
)=(1+ 
	), and to save computations, the
vortex elements running below yc − 25 will be discarded.
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Figure 9. The vorticity contours (|!min|=5; |�!|=15) during the cancellation obtained by scheme(IIIb).

The simulation parameters employed are �=0:85, M =4, �M =0:325, �=0:5 and d	=
0:0005. On the other hand, because the circulation of each of the two Burgers vortices decays
exponentially like exp(−�t) at large times [25], the error tolerance is chosen to be �= �0 for
t6t0 and �= �0 exp(−�(t − t0)) for t¿t0 with �0 = 0:005 and �t0 = 2. Figure 9 shows the so-
obtained cancellation process with Re=160 from the scheme (IIIb). The results are reasonably
well, although slightly more di�usive than those observed in the Figure 16 of Buntine and
Pullin [25]. Figure 10 shows the residuary circulation on a half-plane and the y-displacement
of the vortex centre against �t. As seen, all schemes give close results that agree well with
the previous investigation. In the moving frame, the centre moves upward at early times at a
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Figure 10. (a) The residuary circulation �(t) against �t: square: Ia; triangle: IIIa;
diamond: III(b); circle: IVa; and (b) the y-displacement of the vortex centre against
�t: dotted: Ia; dash: IIIa; dash dotted: III(b); solid: IVa. The solid curve in (a) is the

residuary circulation extracted from Figure 18 of Buntine and Pullin [25].

Figure 11. The vorticity contours at t=0:16 and 0.25. The minimum contour is
|!min|=5 and all contour intervals are |�!|=15. The numbers labeled are those of

the computational vortex elements in use.
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Figure 12. The locations of the counterclockwise (•) and clockwise (+) vortex
elements and the vorticity contours at time t=0:084 and 0.16 from IIIb with (solid)
and without (dotted) merging vortex elements of opposite rotations. The minimum

contour is |!min|=5 and all contour intervals are |�!|=15.
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speed equal to �=2�d. The movement gradually slows down as the time increases, because
of the exponential decay of the residuary circulation.
To distinguish the schemes under investigation, the vorticity contours at t=0:16 and t=0:25

are presented in Figure 11 for comparison. The total numbers of the computational vortex
elements are also indicated. Among all, scheme (Ia) performs worst; (IIIb) and (IVa) per-
form better than (IIIa). Although the simulated �ows are not perfectly symmetric because
of the index dependence of the merging algorithm, simulation results with the permission of
merging elements of opposite rotations are seemingly encouraging. The instantaneous loca-
tions of the counterclockwise (•) and clockwise (+) vortex elements at t=0:084 and 0.16
from results obtained by the scheme (IIIb), with or without a permission to merge elements of
opposite rotations are shown in Figure 12. As seen, the clockwise (counterclockwise) vortex
elements are gradually ‘di�used’ through splitting to the left (right) half-plane. The permis-
sion of merging elements of opposite rotations signi�cantly reduces the total number of the
computational elements (nearly by half at larger times) and most of all, harms the accuracy
little.

4. CONCLUSIONS

A new vortex splitting method to simulate di�usion has been proposed. In the new splitting
method, the parent vortex (the vortex element to be split) is retained after splitting, but its
core width and strength are both shrunk. For convenience, the shrunk core width is chosen
to be the same as that of the surrounding child vortex elements. Its strength, on the other
hand, is determined by preserving either the moments of vorticity and/or the vorticity value
at its location. About half circulation is thus retained in the parent vortex and the remaining
is ‘di�used’ to the surrounding child vortices. The splitting error can thus be reduced by one
order of magnitude. To control the total number of the computational vortex elements, Rossi’s
merging scheme is employed and modi�ed in a way such that less restrictions are required
and merging vortex elements of opposite rotations is allowed.
The proposed schemes are veri�ed by applying them to the simulations of interactions be-

tween two Burgers vortices of same or opposite rotations under external straining �elds.
Reasonably good results are obtained with reasonably many of the computational vortex
elements. Experiences suggest that the maximum allowable core width and the error tol-
erance for merging close-by and similar vortices dominate the error. The smaller these two
factors, the higher the accuracy, but the more computational vortex elements are needed. In
addition, the CPU time spent in merging vortex elements is more than that spent in splitting.
Both however are less than the CPU time spent in computing the Biot–Savart velocities. An
index-independent and faster merging algorithm is under development by employing the cell
concept used in the direction-simulation Monte-Carlo (DSMC) method.
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